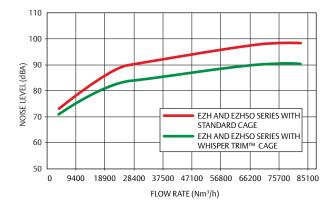

Europe, Middle East and Africa Only

PRESSURE REGULATORS

Types EZH and EZHSO


Pressure Regulators

Types EZH and EZHSO (Spring-to-Open) regulators are accurate pilot-operated, pressure-balanced, soft-seated regulators.

They are designed for use in **high pressure** natural gas transmission / city gate stations, **large capacity** distribution systems and power plant feeds. They provide smooth, reliable operation, tight shutoff and long life.

The main benefits are as follows:


- Long life in severe service applications: The Types EZH and EZHSO utilize a metal plug design to deflect particles and debris away from the soft-seat, which gives enhanced resistance to particle erosion to provide a longer service life. In addition, the Types EZH and EZHSO can be constructed with fluoroelastomer soft parts to extend service life in applications where liquid aromatics are entrained in the gas.
- **High turn down capability:** The oversized diaphragm and unique piloting system of the Types EZH and EZHSO allow for a 100:1 turn down ratio, which will provide superior pressure control in systems with large variations in downstream flow demand.
- Noise attenuation module: The Types EZH and EZHSO offer an optional Whisper Trim Cage which is integral to the regulator therefore maintaining the advantages of its compact design. The Whisper Trim Cage is available on DN 50, 80, 100, 150 and 200. It allows for a noise attenuation up to 8 dB.
- **Absolutely no bleed to atmosphere:** The Types EZH and EZHSO eliminate nuisance and wasteful bleed gas to atmosphere by utilizing a pilot-operated control system, which bleeds 100% of the gas to the downstream system while the regulator is operating.
- Wide range of flows coefficients for each body size: The Types EZH and EZHSO offer the possibility of flow reduction ranges according to each body size. This is achieved by simply replacing the standard seat by a reduction seat.
- **Bubble tight shutoff:** The Types EZH and EZHSO have a knife-edged, metal plug and a soft seat which provides bubble tight shutoff for use in applications where positive shutoff is required. For example: dead-end systems.
- Accurate pressure control: The Types EZH and EZHSO use the Types PRX and SA/2 pilot system to provide stable and accurate downstream pressure control regardless of load changes or inlet pressure variations.
- Easy maintenance system: A top entry design reduces maintenance time. Trim parts can be inspected, cleaned and replaced without removing the body from the pipeline. An innovative system has been designed for the Types EZH DN 100, 150 and 200 which allows maintenance to be carried out by a single operator for DN 100 and by two operators for DN 150 and 200. Maintenance is carried out by simply removing the top plug, extracting the trim assembly, removing the pad holder and then changing the pad. Easy and fast maintenance, no special tools requirement, makes the Type EZH ownership low in cost.
- **Spring-to-close and spring-to-open versions:** Optional positions to choose from in case of main valve diaphragm failure or lack of supply pressure to the pilot. See table on page 6 for "Failure Mode Analysis".

Noise Comparison Diagram

Whisper Trim Cage

Type EZH DN 100 Easy Maintenance System

Configurations

Type EZH: Pilot-operated pressure reducing regulator for low to high outlet pressure.

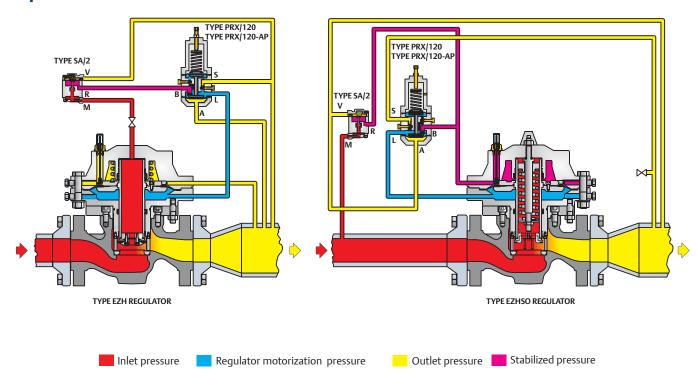
Type EZH-OS2: Type EZH pressure reducing regulator with a Type OS2 slam-shut device for overpressure or overpressure and

underpressure protection.

Type EZHSO: Spring-to-Open pilot-operated pressure reducing regulator for low to high outlet pressure.

Type EZHSO-OS2: Type EZHSO pressure reducing regulator with a Type OS2 slam-shut device for overpressure or overpressure and

underpressure protection.



Type EZH

Type EZH-OS2

Operation

The pilot-operated Type EZH uses inlet pressure as the operating medium, which is reduced through pilot operation to load the actuator diaphragm. Outlet pressure (Pd) opposes the motorization pressure (Pm) in the actuator and also opposes the pilot control spring. Type EZHSO Spring-to-Open version uses inlet pressure as the operating medium, which is reduced through pilot operation to load the actuator diaphragm (lower chamber). The upper case of Type EZHSO actuator is filled with pressure coming from stabilizer filter Type SA/2. This pressure on the upper chamber of the regulator actuator diaphragm opposes the main spring force that tends to open the regulator. The outlet pressure opposes the pilot control spring.

Opening

When the outlet pressure (Pd) drops below the setting of the pilot control spring, pilot control spring force on the pilot diaphragm thus opens the pilot valve plug, providing additional motorization pressure (Pm) to the actuator diaphragm. This diaphragm motorization pressure opens the main valve plug, supplying the required flow to the downstream system. Any excess motorization pressure on the actuator diaphragm escapes downstream through the bleed restriction in the pilot.

Closing

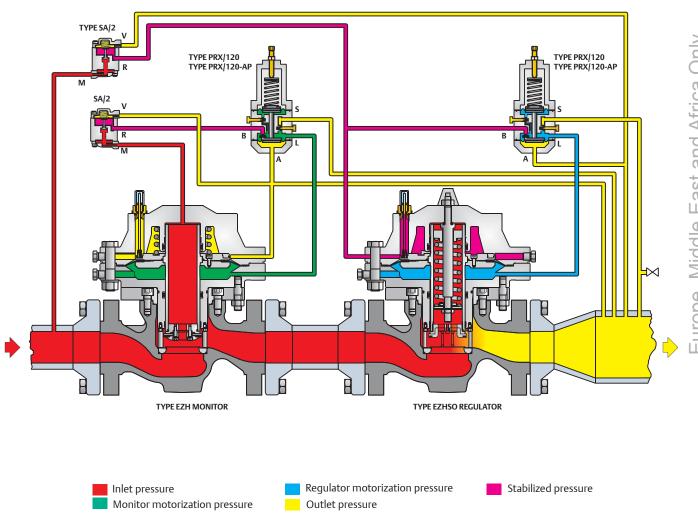
TYPE EZH - When the gas demand in the downstream system has been satisfied, the outlet pressure (Pd) increases. The increased pressure is transmitted through the downstream control line and acts on the pilot diaphragm. This pressure exceeds the pilot spring setting and moves the diaphragm, closing the orifice. The motorization pressure (Pm) acting on the main diaphragm bleeds to the downstream system through a bleed restriction in the pilot.

TYPE EZHSO - When the outlet pressure (Pd) increase over the setting of the pilot spring, the pilot valve disk will be closed, reducing motorization pressure (Pm) to the lower chamber of the regulator actuator diaphragm; the pressure in the upper chamber will force the regulator to close.

Adjustment

The adjustment of the regulator is performed by means of the pilot adjusting screw, which causes variation of the compression of the control spring. Adjustment is performed while the regulator is in operation with the aid of a pressure gauge to monitor downstream pressure. The shut-off valve downstream of the regulator must not be completely closed, it is necessary that a small quantity of gas flows downstream to allow the outlet side to vent when it is necessary to lower the pressure.

Operation

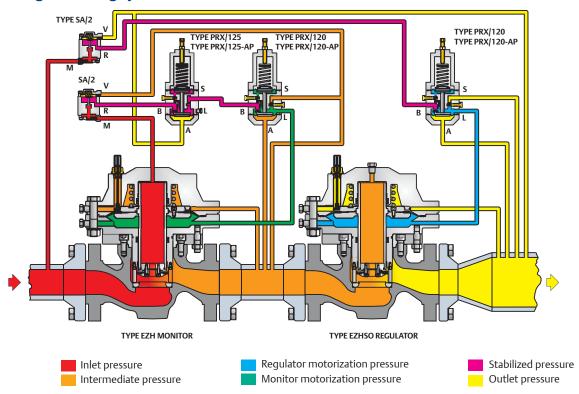

Monitoring System

Monitoring regulation is overpressure protection by containment, therefore, there is no relief valve to vent to the atmosphere.

When the working regulator fails to control the pressure, a monitor regulator installed in series, which has been sensing the downstream and control pressure, goes into operation to maintain the downstream pressure at a slightly higher level than normal pressure.

During an overpressure situation, the monitoring system keeps the customer on line.

Wide-Open Monitoring Systems


This figure shows an upstream wide open monitor Type EZH and a downstream active regulator Type EZHSO (Spring-to-Open).

In this installation, if the Type EZHSO no longer controls the outlet pressure, it will remain open, letting the Type EZH regulator to reach the required outlet pressure.

In case of failure of the Type EZH, it will close and protect the downstream system from overpressure condition.

Operation

Working Monitoring System

In a working monitoring system, the upstream regulator requires two pilots and it is always the monitoring regulator. In this way, both units are always operating and can be easily checked for proper operation. In normal operation, the working regulator controls the outlet pressure of the system. The monitoring regulator's working pilot Type PRX/120 or PRX/120-AP controls the intermediate pressure and the monitor pilot Type PRX/125 or PRX/125-AP senses the system's outlet pressure. If the working regulator fails, the monitoring pilot Type PRX/125 or PRX/125-AP will sense the increase in outlet pressure and take control. The working regulator must be rated for the maximum allowable operating pressure of the system because this will be its inlet pressure if the monitoring regulator fails. Also, the outlet pressure rating of the monitoring pilot Type PRX/125 or PRX/125-AP and any other components that are exposed to the intermediate pressure must be rated for full inlet pressure. Working monitor installations require a Type EZH or EZHSO main valve with a Type PRX/120 or PRX/120-AP working pilot and a Type PRX/125 or PRX/125-AP monitoring pilot for the upstream regulator, and a Type EZH or EZHSO with the appropriate Type PRX/120 or PRX/120-AP pilot for the downstream regulator.

Failure Mode Analysis

Part Name	Failure (Worst Case)	Cause of Failure	Effect	Туре	Regulator Re	action Mode
Filter	Cite and lead of all and a	District	Decrease of feeding pressure	EZHSO	Open	
FIITEF	Filter blocked / clogged	Dirty gas	gives decrease of motorization pressure	EZH		Close
Dilat Dial	Pilot cannot be closed	Dirty gas (microparticles),	l	EZHSO	Open	
Pilot Disk		sour gas	Increase motorization pressure	EZH	Open	
Pilot Lower	Dil i	Fabric quality, sour gas	D	EZHSO	Open	
Diaphragm	Pilot cannot control		Decrease motorization pressure	EZH		Close
Pilot Upper	Pilot cannot feed	Fabric quality,	D	EZHSO	Open	
Diaphragm	the regulator	sour gas	Decrease motorization pressure	EZH		Close
Regulator	Not proper performance	Fabric quality,	Balancing of pressures and charge	EZHSO	Open	
Diaphragm	of the motorization pressure chamber	sour gas	or discharge of the motorization pressure chamber	EZH		Close

Features

Applications

EZH and EZHSO Series regulators are used in reduction, distribution and conveying stations of suitably filtered natural gas. They can also be used for air, propane, butane, LPG, city gas, nitrogen, carbon dioxide and hydrogen.

Technical Features

Allowable pressure PS : up to 100 bar Inlet pressure P_u : 1 to 100 bar Set range P_d : 1 to 80 bar

Minimum operating differential pressure

Type EZH Δp_{min} : 1 bar

Type EZHSO Δp_{min} : 3.8 bar (DN 25, 50 and 80)

1.8 bar (DN 100)

1 bar (DN 150 and 200)

Maximum operating differential pressure

Type EZH Δp_{min} : 99 bar Type EZHSO Δp_{min} : 96.2 bar

Functional Features

Accuracy class

Type EZH AC : up to \pm 1% Type EZHSO AC : up to \pm 2.5% Lock-up pressure class SG : up to \pm 5% Class of lock-up pressure zone SZ : up to 5% Operating temperature TS : $-20 / 60 \,^{\circ}$ C

-30 / 71 °C (optional)

Shut-off device

Maximum operating differential pressure Δp_{max} : 99 bar Response time ta : <1 s

Accuracy class

Diaphragm and bellows version AG : up to \pm 2.5% Piston version AG : up to \pm 5% Set pressure range $W_{du} - W_{do} : 0.010 / 100 \text{ bar}$

Flanged connections

Same Inlet and outlet: DN 25 - 50 - 80 - 100 - 150 - 200

Flange rating: PN 16B - PN 25B - PN 40B

ANSI 150 RF - ANSI 300 RF - ANSI 600 RF

Materials

Body Steel Regulator valve plug Stainless steel
Connecting parts and bottom Steel Slam-shut valve plug Stainless steel

Actuator Steel Regulator plug disc Nitrile or fluorocarbon (FKM)
Regulator / Slam-shut orifice Stainless steel Slam-shut O-rings Nitrile or fluorocarbon (FKM)

Calculation Procedures

Symbols

Q = Natural gas flow rate in Stm³/h

P1 = Absolute inlet pressure in bar

P2 = Absolute outlet pressure in bar

C_g = Flow rate coefficient

C₁ = Body shape factor

d = Relative density of the gas

Flow Coefficients

						TYPES	EZH AND	EZHSO				
REI	DUCTION		Slan	n-Shut (X B	ody)		Without Slam-Shut (E Body)					
		DN 25	DN 50	DN 80	DN 100	DN 150	DN 25	DN 50	DN 80	DN 100	DN 150	DN 200
	0	284	1078	2247	3567	6845	280	1088	2266	3696	7010	13,026
Qf	1	210	908	1684	2969	5464	218	829	1698	2902	5804	
Qt	2	126	671	1058	1763	3685	128	607	1066	1784	3670	7010
	3	79	385	685	1062	2088	81	370	690	1072	2098	4051
	0	550	2092	4359	6920	13,280	544	2110	4396	7170	13,600	25,270
_	1	408	1762	3266	5760	10,600	423	1609	3294	5630	11,260	
C _g	2	245	1301	2052	3420	7150	249	1177	2069	3460	7120	13,600
	3	154	746	1328	2060	4050	157	718	1339	2080	4070	7860
	0	31.3	38.3	30.8	32.5	32.8	35.5	33.5	30.8	31.4	31.4	35.0
_	1	34.3	35.3	33.9	35.3	35.0	38.7	31.9	33.9	34.2	35.9	
C ₁	2	33.6	38.8	37.8	37.3	38.8	39.7	35.6	37.8	36.3	39.6	36.4
	3	32.1	40.8	33.6	37.1	39.7	39.1	38.2	33.6	37.3	30.8	38.3

					ТҮР	ES EZH AND	EZHSO W	/ITH WHIS	PER III			
REI	DUCTION		Slam-Shu	ıt Integrat	ed (X Body)		Without Slam-Shut (E Body)					
		DN 25	DN 50	DN 80	DN 100	DN 150	DN 25	DN 50	DN 80	DN 100	DN 150	DN 200
	0	223	781	1693	2742	6103	255	793	1708	2789	6397	10,088
	1	215	764	1418	2479	4974	209	716	1172	2438	5304	
Qf	2	140	603	975	1644	3495	127	566	984	1711	3449	6624
	3	87	370	685	1041	2036	81	358	690	1057	2072	3892
	0	433	1516	3285	5320	11,840	495	1539	3313	5410	12,410	19,570
_	1	417	1482	2751	4810	9650	406	1389	2774	4730	10,290	
C _g	2	273	1169	1892	3190	6780	247	1099	1908	3320	7080	12,850
	3	168	718	1328	2020	3950	158	695	1339	2050	4020	7550
	0	35.5	37	30.8	31.7	34.0	33.8	33.5	30.8	30.4	33.3	32.8
C ₁	1	35.4	37.5	33.6	34.1	35.0	39.4	34.1	33.6	32.4	35.1	
۲-1	2	32.3	39.5	37.1	36.4	37.6	39.9	35.7	37.1	35.7	37.1	39.3
	3	32.9	39.4	38.3	37.6	39.6	39.9	37.7	38.3	37.3	39.6	39.6

Flow Rate Q

Sub-critical state with: $P2 > \frac{P1}{2}$

Q =
$$0.525 \cdot C_g \cdot P1 \cdot sine \left(\frac{3417}{C1} \cdot \sqrt{\frac{P1-P2}{P1}} \right)^{\circ}$$

N.B. the sine argument is expressed in sexagesimal degree.

Critical state with: $P2 \le \frac{P1}{2}$

$$Q = 0.525 \cdot C_a \cdot P1$$

For other gases with different densities, the flow rate calculated with the above formulas must be multiplied by the correction factor:

$$F = \sqrt{\frac{0.6}{d}}$$

GAS	RELATIVE DENSITY	FACTOR
dAS	d	F
Air	1	0.78
City gas	0.44	1.17
Butane	2.01	0.55
Propane	1.53	0.63
Nitrogen	0.97	0.79
Carbon dioxide	1.52	0.63
Hydrogen	0.07	2.93

DN Sizes

Calculate the required C_a with the following formula:

Sub-critical with: P2 > $\frac{P1}{2}$

$$C_g = \frac{Q}{0.525 \cdot P1 \cdot sine \left(\frac{3417}{C1} \cdot \sqrt{\frac{P1 - P2}{P1}}\right)^{\circ}}$$

N.B. The sine argument is expressed in sexagesimal degree.

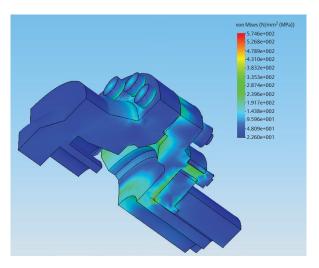
Critical state with: $P2 \le \frac{P1}{2}$

$$C_g = \frac{Q}{0.525 \cdot P1}$$

N.B. The above formulas apply to natural gas flow rate only. If the flow rate value (Q) refers to other gasses, divide it by the correction factor F.

Select the diameter of the regulator with Cg higher than calculated value.

After finding the DN of the regulator, check that gas speed on the seat does not exceed 120 m/sec, using the following formula:


$$V = 345.92 \cdot \frac{Q}{DN^2} \cdot \frac{1 - 0.002 \cdot P_u}{1 + P_u}$$

V = Velocity (m/s)

345.92 = Numerical constant

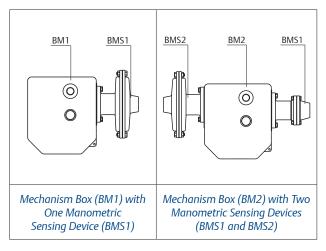
Q = Flow rate under standard conditions (Stm³/h)

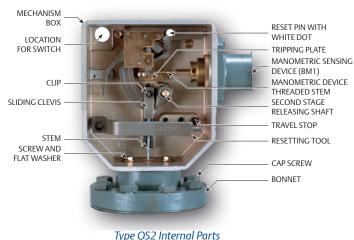
DN = Regulator nominal diameter (mm) P_{...} = Inlet pressure in relative value (bar)

Advanced Design Tools

Slam-Shut Device

The optional slam-shut device can provide either overpressure or overpressure and underpressure protection by completely shutting off the flow of gas to the downstream system. The slam-shut has a mechanism box and a manometric device. The manometric device is a spring and diaphragm actuator. Its movement activates the detection stage of the mechanism box.


The shutoff is a two-stage process, the detection stage and the power stage. This separation between detection stage and power stage provides maximum precision, alleviating many false trips caused by environmental vibrations.

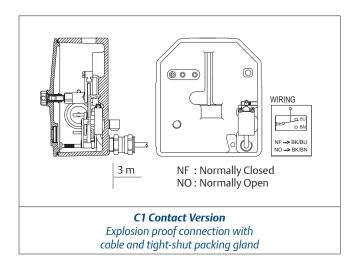

The slam-shut device includes a bypass valve that will allow pressure to be equalized when resetting the device. Once the slam-shut device has been tripped, it must be manually reset.

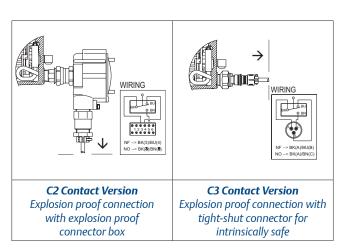
For more information about the Types EZH and EZHSO with a slam-shut device, contact the local Sales Representative or Sales Office.

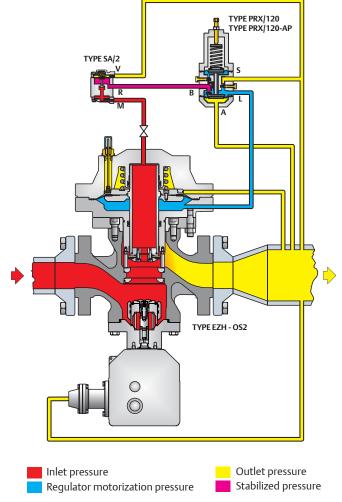
Spring Adjustment Ranges (BMS)

	BMS			MAX. ONLY			MIN. ONLY		MAX. AI	ND MIN.	INTER	RVALS
			w	dso Setting (ba	ar)	w	d _{su} Setting (ba	ar)	W _{dsu} Sett	ting (bar)	∆1 AN	ND ∆2
Туре	Size box (bar)	PMS box	Max.	Recommended Range		Min. Recommended Range		Min.				
.,,,,		low pt. possible	Max. low pt.	Max. high pt.	low pt. possible	Min. Min. low pt. high pt.		low pt. possible	Max. high pt.	∆1 (bar)	∆2 (bar)	
			0.010	0.015	0.035	0.010	0.015	0.035	0.010	0.035	0.004	0.010
	Diaphragm 162 1		0.025	0.040	0.080	0.025	0.040	0.080	0.025	0.080	0.005	0.025
			0.045	0.080	0.140	0.045	0.080	0.150	0.045	0.140	0.010	0.050
		162 10	0.070	0.070	0.240	0.070	0.070	0.240	0.070	0.240	0.014	0.060
E		10	0.115	0.140	0.380	0.115	0.150	0.400	0.115	0.380	0.018	0.150
ohra			0.140	0.300	0.750	0.140	0.300	0.650	0.140	0.750	0.050	0.350
Diag			0.250	0.600	1.3	0.250	0.600	1.15	0.230	1.3	0.080	0.600
			0.450	1.2	2.3	0.450	1.1	2.0	0.450	2.3	0.170	1.1
			1.0	2.0	5.1	1.0	2.0	4.7	1.0	5.1	0.350	2.5
	071	20	2.1	4.0	11.0	2.1	4.0	9.5	2.1	11.0	0.700	5.5
			4.0	8.0	16.0	4.0	8.0	14.4	4.0	16.0	1.6	10.0
	027	100	16.0	16.0	22.0	16.0	16.0	19.0			3.0	
Piston	027	100	22.0	22.0	40.0	19.0	19.0	38.0	Not poss	ible with	6.5	
Pist	017	100	40.0	40.0	55.0	38.0	38.0	50.0	only	1 BMS	7.0	
	017	100	55.0	55.0	100.0	50.0	50.0	90.0			12.0	
NS.	236	35	5.5	11.0	22.0	5.5	11.0	16.0	5.5	22.0	1.6	10.0
Bellows	230	22	8.3	16.0	35.0	8.3	16.0	28.0	8.3	35.0	2.5	20.0
ă	315	72	17.5	35.0	72.0	17.5	28.0	65.0	17.5	72.0	5.0	33.0

Applications and Construction Guide


APPLICATION	MECHANI	SM BOX	MANOMETRIC SENSING DEVICE		
APPLICATION	BM1	BM2	BMS1	BMS2	
Overpressure Shut-off (OPSO)	Yes	No	Yes	No	
Underpressure Shut-off (UPSO)	Yes	No	Yes	No	
Overpressure Shut-off (OPSO) and Underpressure Shut-off (UPSO)	Yes	No	Yes ⁽¹⁾	No	
Overpressure Shut-off (OPSO) and Underpressure Shut-off (UPSO)	No	Yes	Yes ⁽²⁾	Yes	
Overpressure Shut-off (OPSO), Overpressure Shut-off (OPSO) and Underpressure Shut-off (UPSO)	No	Yes	Yes	Yes	


^{1.} When using one manometric sensing device (BMS1) for both overpressure and underpressure shutoff, make sure that the difference between set pressures falls within the maximum range shown in above table "Spring Adjustment Ranges"


shown in above table "Spring Adjustment Ranges".

2. When using two manometric sensing devices (BMS1 and a BMS2), the BMS1 can only be used for high trip.

	VERSIONS OF EXPLOSION PROOF LIMIT SWITCHES										
Versions	Installment	Timbénosa		Mechanical connections	Electrical connections						
versions	installment	Tightness	Connection	Cc	Common	NF	NO	Connection			
C0		IP 68	Without	Cap 1/2 NPT							
C1	Explosion proof	IP 68	Explosion proof	3 m wire	Black	Blue	Brown	Wires			
C2	Explosion proof	IP 65	Explosion proof	Connector box explosion proof PE explosion proof	3	4	5	Screwed wiring			
C3	Intrinsically safe	IP 68	Explosion proof	Intrinsically safe tight-shut connector	А	В	С	Welded wiring			

Pilots

The Types EZH and EZHSO pressure reducing regulator includes a PRX Series pilot mounted on the Types EZH and EZHSO main valve for pressure reducing or wide-open monitoring applications.

PRX Series pressure reducing pilots have the ability to handle a wide range of set points from 1 to 80 bar:

Type PRX/120

Outlet pressure range of 0.5 to 42 bar. The Type PRX/120 can be used as the pilot on single stage pressure reducing regulators or as the monitor pilot or as the working pilot in wide-open monitor systems.

Type PRX/120-AP

Outlet pressure range of 30 to 80 bar. The Type PRX/120-AP can be used as the pilot on single stage pressure reducing regulators or as the monitor pilot or as the working pilot in wide-open monitor systems.

Type PRX/125

Identical to the Type PRX/120 except the restriction screw is removed. The Type PRX/125 can only be used as the monitor override pilot on working monitor applications.

Type PRX/125-AP

Identical to the Type PRX/120-AP except the restriction screw is removed. The Type PRX/125-AP can only be used as the monitor override pilot on working monitor applications.

The Type SA/2

Pilot supply filter regulator, provides a constant supply pressure to the PRX Series pilot that is 3 bar over set pressure. The Type SA/2 is equipped with a 5μ filtering degree filter and is suitable for heating.

PRX/ Series

	APPLICATION		ALLOWABLE		BODY AND	
Regulator or	Operating N	Monitor Type	PRESSURE	SET RANGE W _d (bar)	COVERS	
Monitor Type	Regulator	Monitor	PS (bar)	vv _d (bur)	MATERIAL	
PRX/120	PRX/120	PRX/125	100	0.5 - 42	Steel	
PRX-AP/120	PRX-AP/120	PRX-AP/125	100	30 - 80		

1/4" NPT female threaded connections

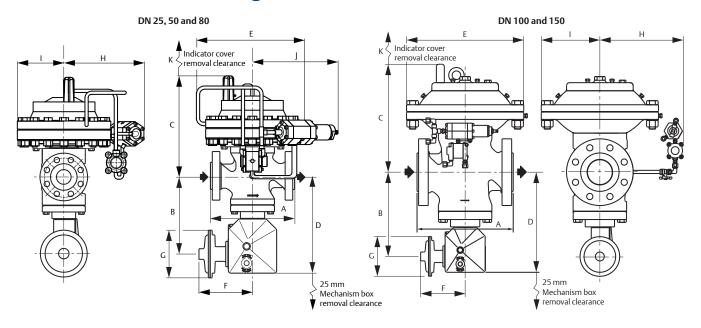
The Type SA/2 pressure pre-reducer must be used with PRX/ Series pilots.

Type SA/2

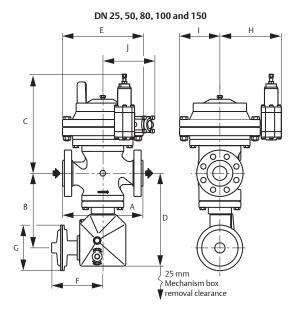
ТҮРЕ	ALLOWABLE PRESSURE PS (bar)	SUPPLIED PRESSURE	BODY AND COVERS MATERIAL	
SA/2	100	3 bar + Downstream pressure	Steel	

1/4" NPT female threaded connections

Booster Valves


MODEL	ALLOWABLE PRESSURE PS (bar)	SET RANGE W _d (bar)	BODY AND COVERS MATERIAL	
PRX/131	100	0.5 - 40	Charl	
PRX-AP/131	100	30 - 80	- Steel	

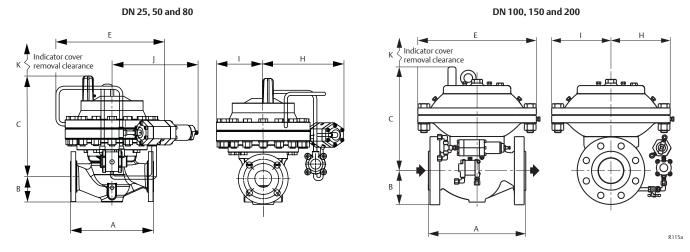
1/4" NPT female threaded connections


Examples of Connections

Overall Dimensions and Weights

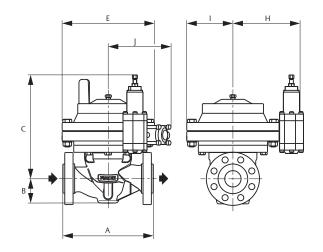
Types EZH OS2 and EZHSO OS2 (Horizontal Position)

Types EZH OS2 and EZHSO OS2 (Vertical Position)


DN		WEIGHTS, kg	
DIN	CL150 / PN 16B	CL300 / PN 25B / PN 40B	CL600
25	49	50	51
50	81	83	85
80	168	175	177
100	237	250	265
150	680	690	696

For Type EZHSO OS2 version add 1 kg.

	OVERALL DIMENSIONS, mm									
DN		F		G						
	Diaphragm	Piston	Bellows	Diaphragm	Piston	Bellows				
25										
50										
80	181	204	223	162	71	74				
100										
150										


		MAXIMUM OVERALL DIMENSIONS, mm															
DN	Α							С				н			J		
	CL150	CL300	CL600	PN 16B	PN 25B	PN 40B	В	Type PRX Horizontal	Type PRX Vertical	D	E	Type PRX Horizontal	Type PRX Vertical	I	Type PRX Horizontal	Type PRX Vertical	К
25	184	197	210	193.5		250	290	310	315	320	260	250	113	280	190	20	
50	254	267	286	254	267		265	320	320	330	380	310	310	144	270	190	38
80	298	317	337	310	3	317		400	400	366	500	390	390	200	270	270	F1
100	352	368	394	350	368		345	442	427	410	580	394	394	240		140	51
150	451	473	508	451	473		330	635	635	395	700	432	432	330		457	70

Overall Dimensions and Weights

Types EZH and EZHSO (Horizontal Position)

DN 25, 50, 80, 100, 150 and 200

DN	WEIGHTS, kg											
DN	CL150 / PN 16B	CL300 / PN 25B / PN 40B	CL600									
25	38	39	40									
50	71	74	75									
80	145	151	153									
100	211	224	239									
150	646	656	662									
200	832	842	850									

For Type EZHSO version add 1 kg.

Types EZH and EZHSO	(Vertical	Position)	j
Types LZTT und LZTTSO	verticui	i ositioii)	

		MAXIMUM OVERALL DIMENSIONS, mm														
DN	Α							С			Н			J		
	CL150	CL300	CL600	PN 16B	PN 25B	PN 40B	В	Type PRX Horizontal	Type PRX Vertical	E	Type PRX Horizontal	Type PRX Vertical	I	Type PRX Horizontal	Type PRX Vertical	К
25	184	197	210		193.5		62	290	310	320	260	250	113	280	190	38
50	254	267	286	254	267		83	320	320	380	310	310	144	270	190	38
80	298	317	337	310	3	317		400	400	500	390	390	200	270	270	E1
100	352	368	394	350	368		137	442	427	580	394	394	240		140	51
150	451	473	508	451	4	73	135	635	635	700	432	432	330		457	70
200	543	568	610	543	568		210	724	724	700	432	432	330		457	70

Webadmin.Regulators@emerson.com

Fisher.com

Facebook.com/EmersonAutomationSolutions

in LinkedIn.com/company/emerson-automation-solutions

Twitter.com/emr_automation

Emerson Automation Solutions

Americas McKinney, Texas 75070 USA T +1 800 558 5853 +1 972 548 3574

Europe Bologna 40013, Italy T +39 051 419 0611 Asia Pacific Singapore 128461, Singapore T +65 6777 8211

Middle East and Africa Dubai, United Arab Emirates T +971 4 811 8100 D104253X012 © 2009, 2018 Emerson Process Management Regulator Technologies, Inc. All rights reserved. 04/18.

The Emerson logo is a trademark and service mark of Emerson

The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their prospective owners. Fisher™ is a mark owned by Fisher Controls International LLC, a business of Emerson Automation Solutions.

The contents of this publication are presented for information purposes only, and while effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available on request. We reserve the right to modify or improve the designs or specifications of our products at any time without notice.

Emerson Process Management Regulator Technologies, Inc does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson Process Management Regulator Technologies, Inc. product remains solely with the purchaser.

